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ABSTRACT 

We prove a conjecture of Kavraki, Latombe, Motwani and Raghavan that  

if X is a compact simply connected set in the plane of Lebesgue measure 

1, such that  any point x E X sees a part  of X of measure at least e, then 

one can choose a set G of at most const~ log 1 points in X such that  

any point of X is seen by some point of G. More generally, if for any k 

points in X there is a point seeing at least 3 of them, then all points of 

X can be seen from at most O(k 3 log k) points. 
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1. I n t r o d u c t i o n  

Consider an art gallery of total area 1 in the plane such that every guard wherever 

located in the gallery can see an area of size at least ~. Kavraki, Latombe, 

Motwani and Raghavan (KLMR) [8] asked if the gallery can be guarded by f(e) 

guards, for some function f of r 

Broder, Dyer, Frieze, Raghavan and Upfal [3] showed that for art galleries, 

even in dimension n the number of guards can be bounded by a function of e, n 

and the diameter D of the gallery. 

We will give an affirmative answer to KLMR's problem for f(e) = C !~ log ~, 

where C is an absolute constant (which is rather large). 

A gal lery  is a compact set in the plane, X. A point x E X sees a point y E X 

if the segment xy is fully contained in X. A subset G C X gua rds  X if each 

point of X is seen by at least one point of G. For a point x E X, denote by V(x) 

the visible region of x in X, that is, the set of all points y E X seen by X. 

THEOREM 1: Let X be a simply connected gallery of Lebesgue measure A2(X) = 

1, and let e > 0 be a real number such that A2(V(x)) _> e for all x E X.  

1 log 1 points. More generally, if Then X can be guarded by at most const ~ 

X has h holes, and A~(V(x)) _7 e for a11 x E X, then X can be guarded by 

1 log 1 points. (In fact, a random sample of this many points, chosen from C(h) ~ 

the uniform distribution on X given by the Lebesgue measure, guards X with 

high probability.) 

The proof uses concepts and results of Vapnik and Chervonenkis [17] and 

Haussler and Welzl [6] (VC-dimension and e-nets). For a set with holes (i.e. for 

h > 0), we use a Ramsey-type argument which was suggested by Negetfil in a 

slightly different context. The proof is also related to the so-called visibi l i ty 

graphs;  see a remark in section 2. 

By our method, we bound C(h) in Theorem 1 by a quite fast-growing function. 

Kavraki et al. [8] conjectured the bound on the number of guards should be 

polynomial in h and l /e ,  Continuing our work, Valtr [16] proved this conjecture 

in a very strong form, bounding the number of guards by O (log 2 h I log ~) for h 

sufficiently large. He also improved the numeric constant in the bound for simply 

connected galleries considerably (see section 2). 

The following is a more general result for simply connected art galleries: 

THEOREM 2: Let X be a simply connected gallery and k an integer such that 
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among any k points in X ,  there are some 3 which can be seen from a single point. 

Then X can be guarded by at most O(k 3 logk) points. 

The proof uses a technique developed by Alon and Kleitman [1], employing a 

fractional Helly theorem and a linear separation theorem. 

In section 4 we give an example showing that there exist galleries (with a large 

number of holes) in which each point sees a constant fraction of the area of the 

gallery (1/10, say) but arbitrarily many points are needed to guard the whole 

gallery. In fact, calculation shows that the number of guards in our example 

grows as it(log h), where h is the number of holes, hence Valtr's upper bound 

mentioned above is nearly tight, at least for a fixed e. We were informed that  

an example with similar properties was constructed also by Broder, Dyer, Frieze, 

Raghavan and Upfal [3]. 

2. V C - d i m e n s i o n  of  galleries 

First we recall definitions and results from [17], [6]. Let S be a set system on a set 

X. We say that a subset A C X is s h a t t e r e d  (by S) if every possible subset of A 

can be obtained as the intersection of some S C S with A. The V C - d i m e n s i o n  

of S is the supremum of the sizes of all finite shattered subsets of X. 

Let p be a probability measure on X such that all sets of S are measurable. A 

set N C X is called an e-net for S (with respect to p) if it intersects each S E S 

with p(S) > e (e > 0 is a real number). Haussler and Welzl [6], extending ideas 

of Vapnik and Chervonenkis [17], proved the following: 

THEOREM 3: Let X be a set, # a probability measure on X ,  and S a system of 

measurable sets on X of VC-dimension at most d. Then for any E E (0, 1) there 

exists an e-net for $ (with respect to 1~) of size at most C(d)[  log [ ,  where the 

number C(d) depends on d only. A random sample of this size is an e-net with 
1 probability exponentially small in ~. 

Let us remark that [6] proves this result for the special case when X is finite 

and p is the uniform distribution on X. However, the same proof goes through 

almost literally for an arbitrary probabilistic measure (see also [17] for a proof 

of a related result for general probability measures). Another fact we need is as 

follows: 

LEMMA 4 ([13], [14], [17]): / i S  is a set system ofVC-dimension d on an n-point 
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set, then 

In particular, if d is fixed, IS[ is bounded by a fixed polynomial in n. 

Our proof of Theorem 1 is based on the following: 

PROPOSITION 5: Let X C ~2 be compact and simply connected. Then the VC- 

dimension of the set system V(X) -- {V(x); x C X}  is bounded by a constant. 

More generally, if X has at most h holes, then the VC-dimension of •(X) is 

bounded by a function of h. 

Proof of Theorem 1: Consider a gallery X as in Theorem 1. Since each V(x) 

has Lebesgue measure at least e, an e-net for the set system ))(X) (with respect 

to Lebesgue measure) intersects each V(x), and thus guards X. By Theorem 3 

and Proposition 5, an e-net of size Oh (~ log ~) exists in this situation. II 

Let us introduce some terminology concerning visibility graphs. If A is a subset 

of X, we define the visibi l i ty g r a p h  of  A in X, denoted by VGx(A),  as the 

graph with vertex set A and with two distinct points u, v forming an edge iff 

they see each other (within X). For two sets A, B _C X, we define the b i p a r t i t e  

vis ibi l i ty  g r a p h  of  A, B in X, denoted by B V G x  (A, B), as the bipartite graph 

(A, B, E) (A, B are the color classes and E C_ A x B is the edge set), where 

(a, b) E E iff a and b see each other. 

Proof of Proposition 5: Let d be a sufficiently large number, and suppose that 

there exists a d-point set A C_ X shattered by P(X). This means that for each 

subset S C_ A there exists a point Ys E X which sees all points of S but no point 

of A \ S; put B = {Ys; S C_ A}. In such a situation, we say that A is s h a t t e r e d  

by B. 

Consider the bipartite visibility B V G x  (A, B). For later use we note that if G = 

(U, V, E) is any fixed bipartite graph, A is sufficiently large, and is shattered by 

B, then B V G x  (A, B) contains an isomorphic copy of G as an induced subgraph 

(with vertices of U mapped into A and vertices of V mapped into B). 

Starting with A, B as above, we find a smaller shattered set in a special 

position. Draw a line thru each pair of points of A. The arrangement of these 

at most (d) lines has O(d 4) ceils (vertices, edges, and open convex polygons), so 

there is one such cell containing a subset B ~ c_ B of at least 2d/O(d 4) points of 

B. These points correspond to subsets of A, so they define a set system S1 on 
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A. If dl, the VC-dimension of S1, were bounded by a constant independent of 

d, then the number of sets in 81 would grow at most polynomially with d (by 

Lemma 4), but we know it grows exonentially, hence dl grows to infinity with 

d ~ co. Thus, we may assume that some subset A1 C_ A is shattered by a subset 

B1 c_ B t, with dl = [All large. 

By the observation made in the beginning of the proof, we know that  the 

bipartite visibility graph of A1 and B1 contains any prescribed bipartite induced 

subgraph (up to some size). In particular, we can select subsets B2 C_ B1 and 

A2 _c A1 such that  d2 = IB21 is large, [A2[ = 2 d2 and B2 is shattered by A2 (so 

we reverse the sides; d2 can be chosen Llog 2 dlJ in this situation - -  this is an 

observation due to Assouad [2]). 

Next, we repeat the procedure from the first step of the proof, this time 

selecting a set B3 C_ B2 of size d3 (still sufficiently large), and A3 C_ A2, such 

that  B3 is shattered by A3 and A3 lies in a single cell of the arrangement of all 

lines defined by pairs of points of B3. This cell must be 2-dimensional (if it were 

an edge, we would get that all the points of A3 and B3 are collinear, which is 

impossible), so no line determined by two points of A3 intersects conv(B3), and 

vice versa (in particular, conv(A3) n conv(B3) = 0). Hence each point of B3 

sees all points of A3 within an angle smaller than r ,  and in the same clockwise 

angular order; let _<A be this linear order of the points of A3. Similarly we have 

a common counterclockwise angular order, _<B, of points of B3 around any point 

of A3. 

Let us consider the case of X simply connected. Here it suffices to have d3 = 5. 

We put B'  = B3, and for each b E B ~ we consider the point a = a(b) E A3 which 

sees all points of B t but b. Let these 5 points form a set A ~ C A3. 

Since we have 5 points on each side, we may choose a b E B' such that b is 

neither the first nor the last point of B / in the _~B ordering, and at the same 

time a(b) E A / is not the first or last point in the ~_A ordering of A ~. We get 

a situation as in Figure 1, namely that  b sees both the predecessor a ~ and the 

successor a t~ of a(b), and a = a(b) sees both the predecessor b' and the successor 

b" of b. It is easy to check that  the segments ab ~ and a~b intersect as shown 

(because of the restrictions on the relative position of A ~ and B~), and similarly 

for the segments a"b and ab". These four segments are contained in X, and since 

X is simply connected, also the shaded region bounded by the segments must be 

a part of X, hence a and b see each other - -  a contradiction. 
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Next, let X have h holes. We use a Ramsey-type result of Neget~il and RSdl 

[10]. An o rde r ed  b ipa r t i t e  g r a p h  is a bipartite graph (U, ~, E) with some linear 

orderings on U and on V. (Ne~et~il [private communication] earlier suggested 

this kind of approach for exhibiting a forbidden induced bipartite subgraph of 

visibility graphs of simple polygons; see a remark at the end of this section.) 

a I 

a b 

a I! 

Figure 1. A contradiction to the invisibility of a and b. 

LEMMA 6 ([10]): Let (U, If, E) be a fixed ordered bipartite graph. There exists 

a bipartite graph (R, S, F) such that for any linear orders <--R on R and <_s on 

S, the corresponding ordered bipartite graph contains an ordered induced copy 

of (U, V, E) O.e. the induced embedding sends U into R and V into S in an 

order-preserving manner)*. 

In our situation, we let (U, V, E) be the ordered bipartite graph with U = 

(Uo, u l , . . . ,  U3h+2), V = (Vo,..., Vah+2), where the subgraph on each two triples 

(U3i , ~t3i.l-1, tt3i-l-2) and (vai, v3i+1, V3i+2) (i = 0, 1 , . . . ,  h) is as the one in Figure 1, 

i.e. ~t3i+l is connected to v3i , v3i.t_ 2 but not to v3i+l, v3~+1 is connected to u3~ and 

~t3i+2 , and the remaining edges do not matter. We choose d3 so large that the 

bipartite visibility graph B V G x  (A3, B3) contains an induced copy (non-ordered) 

of the graph (R, S, F)  constructed for (U, V, E) as in Theorem 6. In the drawing 

of B V G x  (A3, B3), we then obtain h + 1 situations as in Figure 1, with the h + 1 

shaded regions being pairwise disjoint. At most h of these regions may contain a 

hole of X, and the remaining one gives a contradiction to the supposed invisibility 

as for the simply connected case. | 

For simply connected galleries, our proof yields a bound of roughly 1012 for 

the VC-dimension. It seems reasonable to conjecture that the VC-dimension is 

* As was noted by Noga Alon [private communication], it is easy to check that a 
sufficiently large random bipartite graph has the required property with a posi- 
tive probability (but the Neget~il-RSdl construction can be applied also in more 
general situations, where a probabilistic proof seems difficult). 
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in fact a small number, perhaps 6. A floor plan of an art gallery with a 5-point 

shattered subset is shown in Figure 2. The shattered set is indicated by dots 

numbered 1 thru 5. Crosses mark points which see only certain subsets; e.g., 

a cross labeled by 134 sees points 1, 3, and 4 only. All types of subsets up to 

symmetry are shown, with an exception of the empty set (for which we can always 

make a tiny niche somewhere in the wall, so that a point there sees no-one). 

Recently Valtr [16] found a more complicated example with a 6-point shattered 

subset and succeeded in improving the upper bound on the VC-dimension to 23. 

Figure 2. A 5-point shattered set. 

Remark: In her thesis [5], Everett asked whether there is a bipartite graph which 

cannot occur as an induced subgraph of the visibility graph of a simple polygon 

(i.e. a graph of the form V G x  (A), where X is a simple polygon and A is the set of 

its vertices). Shermer [15] exhibited such a forbidden bipartite subgraph; in fact 

he constructed a bipartite graph on 30 vertices which cannot occur as V G x  (A) 

for any simply connected X and any A C_ X. For the VC-dimension result we 

need more - -  namely a bipartite graph which cannot occur as B V G x  (A, B), i.e. 

it is not a visibility graph even if we add any subset of edges on A and on B. 

3. Fractional Helly and duality 

The extra step we need for the proof of Theorem 2 is the following 

PROPOSITION 7: I f  X and k are as in Theorem 2, then there exists a Bore1 

measure # on X such that #(V(x))  > ~ = k -3 for all x ~ X .  
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We will first show: 

LEMMA 8: Let X and k be as in Theorem 2. Let Jr = {V(x) : x E X}, and 

= k -3. Then for any finite collection F1, F2, . . . ,  Fn of sets in ~r and any choice 

ofnonnegative reals t l , . . . , t n  with tl  + t2 + ..- + tn --- 1 there exists a point 

x E X such that 

E ti>_e. 
i; zE Fi 

Alon and Kleitman proved the assertion of Lemma 8 for a family ~- of convex 

compact sets in the plane so that from every k members of the family 3 have a 

nonempty intersection. Alon and Kleitman derived their result from a "fractional 

Helly theorem" of Katchalski and Liu asserting (in a sharp form proved by Kalai 

and by Eckhoff) that for a family of n convex sets in the plane, if the number of 

triples of sets in the family having non-empty intersection is ~(3) then there is 

an intersecting subfamily of size ~n, with 5 _> 1 - (1 -O~) 1/3. The fractional Helly 

theorem gives the assertion of the Lemma for ti = 1/n for i = 1, 2 , . . . ,  n. Apply- 

ing the fractional Helly theorem for families obtained from ~ by taking several 

copies of each set gives, with some calculations, the case where tl,  t 2 , . . . ,  tn are 

rational numbers, and the general case follows by a limiting argument. 

Alon and Kleitman's proof would apply without any change if we can show 

that  finite subfamilies of the family of sets {V(x) : x E X} satisfy the "fractional 

Helly theorem" (although the set V(x) need not be convex in general). It follows 

from a theorem of Eckhoff [4] that if ~" is a finite family of contractible sets in the 

plane such that  every nonempty intersection of sets in the family is contractible, 

then the f-vector of the nerve of K is equal to the f-vector of the nerve of a 

family of convex sets. (The f-vector f = (fo, f l , . . . )  of the nerve of Jr is defined 

as follows: fi is the number of subfamilies of 9 r of size i + 1 with nonempty 

intersection.) It follows that the "fractional Helly theorem" applies to families 

of contractible planar sets such that all nonempty intersections are contractible. 

We thus need 

LEMMA 9: For any points Xl , . . .  ,Xn E X ,  the set V(xl)  f ) . . .  M V(xn) is either 

empty or contractible. 

Proof'. By a theorem of MolngLr [9], it suffices to show that each V(x) is simply 

connected (which is clear, as V(x) is star-shaped), and that each pairwise inter- 

section of the form V(x) fq V(y) is connected. This follows easily from the simple 
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connectedness of X. Let u, v E X be two points in V(x) M V(y); by examining the 

few possible relative positions of u, v, x, and y we find that u and v can always 

be connected by a path within V(x) N V(y); see Figure 3. I 

z 

y z Y 

Figure 3. Illustration of the proof of connectedness of V(x) N V(y). 

The last step in the proof of Proposition 7 also follows the Alon-Kleitman 

proof. They use the duality theorem of linear programming (which is essentially 

the separation of disjoint convex sets in a finite-dimensional space by a hyper- 

plane). We need to deal with an infinite family of sets, so we apply an infinite- 

dimensional separation theorem (alternatively, one could use linear programming 

duality and a limit argument), in a way suggested to us by E. Matou~kovs 

LEMMA 10: Let F be a family of closed sets in a compact Hausdorff space 

X,  and let e E (0, 1] be a real number. Suppose that for any finite collection 

F1, F 2 , . . . ,  F,~ of sets in 3 c and any choice of nonnegative reals t l , . . .  ,tn with 

t l  + t2 + �9 .- + tn = 1 there exists a point x E X such that 

E ti>>_s. 
i;xEF~ 

Then there exists a Borel measure, p, on X,  such that #(F) >_ r for all F e .F. 

Proof: Let C(X)  be the Banach space of all continuous real functions X --* ~[ 

with the supremum norm (i.e. I f l  = maxxex ]f(x)]). For each set F e ~ ,  define 

a set DR C_ C(X)  as the set of all continuous functions X --* [0, 1] which are 1 

at all points of F.  Let D C C(X)  be the convex hull of UFeJ= DF. 

We claim that  D contains no function f with [ f[ < e. Suppose the contrary; 

this means that  there exists a finite convex combination f = ~=i~ tifi, where 

t~ >_ O, ~ t i  = 1, and fi E DFi for some Fi , . . . ,Fn  e 1 z, such that  I f l  < e. 

Since each DR, is convex, we may assume that the F~'s are all distinct. Apply the 

assumption of the lemma to the collection F i , . . . ,  Fn and the numbers t i , . . . ,  tn 

corresponding to this convex combination. This yields a point x with ~i;~eF~ ti >_ 
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e. I f x  E Fi, then f i ( x )  --~ ] by the definition of Df; ,  so we get 

c >  I fl  >- f (x)  = till(x)>>_ ~ ti >>_ ~, 
i~1 i;xEFi 

which is a contradiction. 

The convex sets D and {f  E C(X);  I f l  < E} (the open x-ball) are thus 

disjoint and the latter one has nonempty interior, hence there exists a hyperplane 

separating them, that is, a bounded linear functional h : C(X)  ~ ]R such that 

h(f)  > ~ for f E D, while h(f)  < ~ for I f l  -< e (essentially by the Hahn-  

Banach theorem; see e.g. [12] for an appropriate version of the separation result 

and references for other results referred to in the rest of this proof). The latter 

condition gives I hi -< 1, where I hi = sup(h(f ) ;  f E C(X),  I l l  = 1}. 

By the Riesz Representation theorem, there exists a unique regular Borel signed 

measure u o n X  such that h(f)  = f x f d u  for each f E C(X) .  Let # be the 

variation of u, i.e. the measure defined by p(E) k = sup{~-~/= 1 u(Ei)}, where 

E1 . . . .  , Ek are disjoint measurable subsets of a set E _C X. We have #(X)  = 

Ihl <1. 
We claim that # (F)  _> e for all F E 9 v. Indeed, if # (F)  < ~, choose a G D F 

open with #(G) < e. Then Tietze's theorem provides a continuous function 

f : X ---* [0, 1] which is 0 on X \ G and 1 on F,  so f r DR. On the one hand, 

we should have h(f)  > ~ by the choice of h, but on the other hand, we have 

h(f)  = f x  fdu  <_ f x  f d #  <_ #(G) < ~. This contradiction concludes the proof. 

(Alternatively, we could add the set { f  E C(X); f (x )  > eYx E X} to D in the 

beginning; then the functional h provided by the separation is nonnegative and 

we get a measure right away.) | 

This finishes the proof of Proposition 7 and thus also the proof of Theorem 2. 

4. An example with many holes 

Examp]e 11: There exists a constant e0 > 0 such that for any integer k there is 

a gallery X of measure 1, such that each point of X sees an area at least z0, and 

more than k points are needed to guard X. 

Proof'. We use a probabilistic construction. Let k be given; we choose two 

sufficiently large integers n = n(k) and Q = Q(k). The construction starts by 

choosing a trapezoid A B C D  and appending n small triangular niches to the top 
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side A B  (the construction is illustrated in Figure 4 for n = 4). Next, we choose 

n integers ql . . . .  , qn uniformly and independently at random in range 1 , . . . ,  Q. 

We place q~ + 1 small triangular holes at the base of the ith niche (see the detail 

of the first niche in Figure 4), as follows: Assuming that the base is identified 

with the interval [0, 1], the bases of the holes occupy intervals 

[ ~qi] [ 4 ~ ' ~ q i ] 1  5 [~  1 ~" + ~q~qi] [ 1 ] 1  . . .  1 - - - , 1  
0, , ' ' ' "  4qi' qi ' ' 4q~ 

o 

The angles at the top vertices of the niches are 7r/2, and the angles at the top 

vertices of the holes are ~/3, say. This finishes the construction of the gallery X. 
. ..~ .................. . . . .  

Vl f .  "*% 

"""--.,li' Z .,.-"" 

ll? ................. v2 va v4 

C D 

Figure 4. An example requiring many guards. 

One can check that every point of the gallery sees at least some constant 

proportion eo of the area; we omit the details of this. It remains to show that, 

with a positive probability, X cannot be guarded by k guards. We show that 

even the vertices v l , . . . ,  v~ cannot be guarded by k guards. 

Let x be a fixed point of the trapezoid ABCD.  Let pi be the intersection of 

the line A B  with the line vix, and let (i be the x-coordinate of pi, where the 

coordinate system is chosen so that the base of the ith niche occupies the interval 

[0, 1]. If we have Imi(i - qil _< �88 for some integer mi, then x cannot see v~. If 

we consider k points x l , . . . , x k  E ABCD,  then the probability (over a random 

choice of the q~) that none of xj sees v~ is at least the probability that  there exist 

integers r a i l , . . . ,  mik with Imij~ij -q i l  < �88 J = 1, 2 , . . . ,  k (here ~ j  corresponds 
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to xj similarly as ~i corresponds to x). 

If (il . . . .  , ~ik are arbitrary real numbers, a theorem on simultaneous approxi- 

mation by rationals (see, e.g., [7]) guarantees that for any given natural number Q 

there exist qi E {1, 2 , . . . ,  Q} and integers m / i , . . . ,  mik with Imij~ii-qil  <_ Q-1/k.  

Hence if we let Q = 4 k, we get that for any fixed k-tuple Xl , . . .  ,xk, the probabil- 

ity that one particular vi is guarded by at least one xj is no more than 1 - 1/@ 

Since the choices of the qi are independent, the probability that all the vi are 

guarded by any fixed k-tuple xl . . . . .  xk E X is at most (1 - 1/Q) '~-k (since at 

most k points xj can be placed inside the niches, and such xj only see one vi 

each). 

We now want to bound the probability that there exists any placement of 

xl . . . . .  xk at all guarding all the vi. For every i, we can divide the trapezoid 

A B C D  into at most (2Q) 2 angular sectors in such a way that points placed in 

one sector either all see vi or none does, for any choice of qi. Hence the number 

of possibly nonequivalent placements of a single point within A B C D  is no larger 

than the number of cells in an arrangement of n.4Q 2 lines, which is bounded by 

5n2Q 4 (say). The number of nonequivalent positions for a k-tuple of points is 

then at most (5n2Q4) k. If n is chosen so large that (5n2Q4)k(1 - 4-k) n-k < 1, 

then the probability that X can be guarded by k points is smaller than 1 as 

claimed. | 

5. A r e m a r k  o n  a g r e e d y  a l g o r i t h m  

One might suspect that under the conditions of Theorem 1, a guarding set of a 

size bounded in terms of e could be obtained by a greedy algorithm: Select a 

guard which sees the maximum possible area, then select the second guard as one 

seeing the largest part of the area not seen by the first guard, etc. We present 

an example that this procedure might fail, i.e. select arbitrarily many guards 

for some simply connected galleries. An example of such a gallery is depicted in 

Figure 5. 

The boundary of the gallery is drawn by a full line, the dotted lines are only 

auxiliary. The little spikes ("fins") F1, F[, F.2, F~, . . .  are chosen so that the area 

of Fi and F[ is much larger than the area of Fi+l and F[+ 1. The guards placed at 

A and B suffice to guard all the gallery. However, the first greedily placed guard 

comes to the point G1, where it sees both F1 and F[ and the largest possible 
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piece of the other fins (all points of the gallery, except for the fins, see everything 

but possibly parts of the fins, and since F1, F~ dominate, we look for a position 

where both can be seen). Now only the shaded parts of the other fins remain 

unguarded, with the dominating portion of the area being in F2, F~, so the next 

guard is placed in G2, etc. 

', .. 

F~ ' A 

F; ""... .......... .::. .." 

. . . . "  G | " - . .  .-" "', ,".. 

F~ ." " " " : " "  B 

Figure 5. The greedy algorithm fails. 

The gallery in the figure requires 3 greedily placed guards. It is problematic to 

actually draw examples of this type forcing the greedy algorithm to place more 

guards, but the construction method is extended easily. Namely, we start with 

fins F1, F~ much smaller and much closer to the tip of the large triangle, and 

then we adjoin progressively smaller fins along the sides of the triangle, the next 

pair always coming to the right of the intersection of the lines connecting the 

previous pair to A and B (as in Figure 5). Points in each fin F~ see the portion 

of the triangle above the horizontal level of A and to the right of the vertical 

level of the last fin, Fk. If Fk is placed sufficiently far from the vertical side of 

the triangle (i.e., if we start close enough to the tip with the first pair of fins), 
1 this represents a constant fraction of the area (we can get any fraction below 

by adjusting the proportions appropriately). 

ACKNOWLEDGEMENT: We thank Eva Matou~kov~ for help with Lemma 10. 

Thanks go also to Nati Linial and Jaroslav Ne~et[il for useful discussions, and to 

Hazel Everett for pointing out the reference [15]. 



138 G. KALAI AND J. MATOUSEK Isr. J. Math. 

Re fe rences  

[1] N. Alon and D. Kleitman, Piercing convex sets and the Hadwiger Debrunner (p, q) 

problem, Advances in Mathematics 96 (1992), 103 112. 

[2] P. Assouad, Densite et dimension, Annales de l 'Institut Fourier (Grenoble) 33 

(1983), 233-282. 

[3] A. Broder, M. Dyer, A. Frieze, P. Raghavan and E. Upfal, unpublished. 

[4] J. Eckhoff, fiber kombinatorisch-geometrische Eigenschaften yon Komplexen und 

Familien konvexer Mengen, Journal fiir die reine und angewandte Mathematik 313 

(1980), 171-188. 

[5] H. Everett, Visibility graph recognition, PhD thesis, Technical Report 231/90, 

University of Toronto, 1990. 

[6] D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete and 

Computational Geometry 2 (1987), 127-151. 

[7] E. Hlawka, J. Schoiflengeier and R. Taschner, Geometric and Analytic Number 

Theory, Springer-Verlag, Berlin, 1991. 

[8] L. Kavraki, J-C. Latombe, R. Motwani and P. Raghavan, Randomized processing 

in robot path planning, Proceedings of the 27th ACM Symposium on Theoretical 

Computation, 1995, pp. 353-362. 

[9] J. Moln~r, t)ber den zweidimensionalen topologischen Satz yon Helly, Matematikai 

Lapok 8 (1957), 108-114. 

[10] J. Neget~il and V. R5dl, Simple proof of the existence of restricted Ramsey graphs 

by means of a partite construction, Combinatorica I (1981), 199-202. 

[11] J. O'Rourke, Computational geometry column 18, International Journal of Com- 

putational Geometry and Applications 3 (1993), 107-113; also in SIGACT News 

24:1 (1993), 20-25. 

[12] W. Rudin, Functional Analysis, 2nd edn., McGraw-Hill, New York, 1991. 

[13] N. Sauer, On the density of families of sets, Journal of Combinatorial Theory. 

Series A 13 (1972), 145-147. 

[14] S. Shelah, A combinatorial problem, stability and order for models and theories in 

int~nitary languages, Pacific Journal of Mathematics 41 (1972), 247-261. 

[15] T. Shermer, Several short results in the combinatorics of visibility, Technical 

Report 91-02, School of Computing Science, Simon Fraser University, British 

Columbia. 



Vol. 101, 1997 GUARDING GALLERIES 139 

[16] P. Valtr, Guarding galleries where no point sees a small area, KAM Series (technical 

report) 96-305, Department of Applied Mathematics, Charles University, Prague, 

1996. 

[17] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative fre~ 

quencies of events to their probabilities, Theory of Probability and its Applications 

16 (1971), 264-280. 


