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ABSTRACT

We prove a conjecture of Kavraki, Latombe, Motwani and Raghavan that
if X is a compact simply connected set in the plane of Lebesgue measure
1, such that any point € X sees a part of X of measure at least ¢, then
one can choose a set G of at most const% log% points in X such that
any point of X is seen by some point of G. More generally, if for any k
points in X there is a point seeing at least 3 of them, then all points of
X can be seen from at most O(k3 log k) points.
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1. Introduction

Consider an art gallery of total area 1 in the plane such that every guard wherever
located in the gallery can see an area of size at least e. Kavraki, Latombe,
Motwani and Raghavan (KLMR) [8] asked if the gallery can be guarded by f(e)
guards, for some function f of e.

Broder, Dyer, Frieze, Raghavan and Upfal [3] showed that for art galleries,
even in dimension n the number of guards can be bounded by a function of €, n
and the diameter D of the gallery.

We will give an affirmative answer to KLMR’s problem for f(e}) = C % log %,
where C is an absolute constant {(which is rather large).

A gallery is a compact set in the plane, X. A point z € X sees a point y € X
if the segment xy is fully contained in X. A subset G C X guards X if each
point of X is seen by at least one point of G. For a point ¢ € X, denote by V' (z)
the visible region of x in X, that is, the set of all points y € X seen by X.

THEOREM 1: Let X be a simply connected gallery of Lebesgue measure A\2(X) =
1, and let ¢ > 0 be a real number such that A\*(V(z)) > ¢ for all z € X.
Then X can be guarded by at most const% logé points. More generally, if
X has h holes, and \*(V(x)) > ¢ for all x € X, then X can be guarded by
C(h) % log % points. (In fact, a random sample of this many points, chosen from
the uniform distribution on X given by the Lebesgue measure, guards X with
high probability.)

The proof uses concepts and results of Vapnik and Chervonenkis [17] and
Haussler and Welzl [6] (VC-dimension and e-nets). For a set with holes (i.e. for
h > 0), we use a Ramsey-type argument which was suggested by Negetfil in a
slightly different context. The proof is also related to the so-called visibility
graphs; see a remark in section 2.

By our method, we bound C(k) in Theorem 1 by a quite fast-growing function.
Kavraki et al. [8] conjectured the bound on the number of guards should be
polynomial in h and 1/e. Continuing our work, Valtr [16] proved this conjecture
in a very strong form, bounding the number of guards by O (log, 1 log 1) for h
sufficiently large. He also improved the numeric constant in the bound for simply
connected galleries considerably (see section 2).

The following is a more general result for simply connected art galleries:

THEOREM 2: Let X be a simply connected gallery and k an integer such that
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among any k points in X, there are some 3 which can be seen from a single point.
Then X can be guarded by at most O(k®logk) points.

The proof uses a technique developed by Alon and Kleitman [1], employing a
fractional Helly theorem and a linear separation theorem.

In section 4 we give an example showing that there exist galleries (with a large
number of holes) in which each point sees a constant fraction of the area of the
gallery (1/10, say) but arbitrarily many points are needed to guard the whole
gallery. In fact, calculation shows that the number of guards in our example
grows as Q(logh), where h is the number of holes, hence Valtr’s upper bound
mentioned above is nearly tight, at least for a fixed €. We were informed that
an example with similar properties was constructed also by Broder, Dyer, Frieze,
Raghavan and Upfal [3].

2. VC-dimension of galleries

First we recall definitions and results from [17], [6]. Let S be a set system on a set
X. We say that a subset A C X is shattered (by S) if every possible subset of A
can be obtained as the intersection of some S € § with A. The VC-dimension
of § is the supremum of the sizes of all finite shattered subsets of X.

Let p be a probability measure on X such that all sets of S are measurable. A
set N C X is called an ¢-net for S (with respect to u) if it intersects each S € S
with 4(S) > ¢ (¢ > 0 is a real number). Haussler and Welzl [6], extending ideas
of Vapnik and Chervonenkis [17], proved the following:

THEOREM 3: Let X be a set, u a probability measure on X, and S a system of

measurable sets on X of VC-dimension at most d. Then for any € (0,1) there

exists an e-net for S (with respect to j1) of size at most C(d)2 log 1, where the
number C(d) depends on d only. A random sample of this size is an e-net with
probability exponentially small in %

Let us remark that [6] proves this result for the special case when X is finite
and g is the uniform distribution on X. However, the same proof goes through
almost literally for an arbitrary probabilistic measure (see also [17] for a proof
of a related result for general probability measures). Another fact we need is as

follows:

LeMmA 4 ([13], [14], [17]): IfS is a set system of VC-dimension d on an n-point
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s () () )

In particular, if d is fixed, |S| is bounded by a fixed polynomial in n.

set, then

Our proof of Theorem 1 is based on the following:

PROPOSITION 5: Let X C R? be compact and simply connected. Then the VC-
dimension of the set system V(X) = {V(z); z € X} is bounded by a constant.
More generally, if X has at most h holes, then the VC-dimension of V(X) is
bounded by a function of h.

Proof of Theorem 1: Consider a gallery X as in Theorem 1. Since each V(z)
has Lebesgue measure at least €, an ¢-net for the set system V(X) (with respect
to Lebesgue measure) intersects each V(z), and thus guards X. By Theorem 3

and Proposition 5, an ¢-net of size Oh(% log El) exists in this situation. |

Let us introduce some terminology concerning visibility graphs. If A is a subset
of X, we define the visibility graph of A in X, denoted by VG x(A), as the
graph with vertex set A and with two distinct points u,v forming an edge iff
they see each other (within X). For two sets A, B C X, we define the bipartite
visibility graph of A4, B in X, denoted by BV Gx (A, B), as the bipartite graph
(A,B,E) (A, B are the color classes and E C A x B is the edge set), where
(a.b) € E iff @ and b see each other.

Proof of Proposition 5: Let d be a sufficiently large number, and suppose that
there exists a d-point set A C X shattered by V(X). This means that for each
subset S C A there exists a point ys € X which sees all points of S but no point
of AN S; put B = {ys; S C A}. In such a situation, we say that A is shattered
by B.

Consider the bipartite visibility BV G x (A4, B). For later use we note that if G =
(U,V, E) is any fixed bipartite graph, A is sufficiently large, and is shattered by
B, then BVGx (A, B) contains an isomorphic copy of G as an induced subgraph
(with vertices of U mapped into A and vertices of V' mapped into B).

Starting with A, B as above, we find a smaller shattered set in a special
position. Draw a line thru each pair of points of A. The arrangement of these
at most (‘21) lines has O(d*) cells (vertices, edges, and open convex polygons), so
there is one such cell containing a subset B’ C B of at least 2¢/O(d*) points of
B. These points correspond to subsets of A, so they define a set system S; on
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A. If d;, the VC-dimension of S;, were bounded by a constant independent of
d, then the number of sets in S; would grow at most polynomially with d (by
Lemma 4), but we know it grows exonentially, hence d; grows to infinity with
d — oo. Thus, we may assume that some subset 4; C A is shattered by a subset
B; C B', with d; = |A,] large.

By the observation made in the beginning of the proof, we know that the
bipartite visibility graph of A; and B, contains any prescribed bipartite induced
subgraph (up to some size). In particular, we can select subsets By C B; and
Ay C A such that dy = |Bo| is large, |4s| = 2% and B, is shattered by A, (so
we reverse the sides; da can be chosen |log,d;] in this situation — this is an
observation due to Assouad [2]).

Next, we repeat the procedure from the first step of the proof, this time
selecting a set Bs C By of size ds (still sufficiently large), and A3 C A, such
that Bj is shattered by As and Aj lies in a single cell of the arrangement of all
lines defined by pairs of points of Bs. This cell must be 2-dimensional (if it were
an edge, we would get that all the points of A3 and Bj are collinear, which is
impossible), so no line determined by two points of A3 intersects conv(Bs), and
vice versa (in particular, conv(As) N conv(B;) = @). Hence each point of Bj
sees all points of A3 within an angle smaller than m, and in the same clockwise
angular order; let <4 be this linear order of the points of A3. Similarly we have
a common counterclockwise angular order, <p, of points of B3 around any point
of A3.

Let us consider the case of X simply connected. Here it suffices to have d3 = 5.
We put B’ = Bs, and for each b € B’ we consider the point a = a(b) € A3 which
sees all points of B’ but b. Let these 5 points form a set A’ C Aj.

Since we have 5 points on each side, we may choose a b € B’ such that b is
neither the first nor the last point of B’ in the <p ordering, and at the same
time a(b) € A’ is not the first or last point in the <4 ordering of A’. We get
a situation as in Figure 1, namely that b sees both the predecessor a’ and the
successor a” of a(b), and a = a(b) sees both the predecessor &' and the successor
b" of b. It is easy to check that the segments ab’ and @b intersect as shown
(because of the restrictions on the relative position of A’ and B’), and similarly
for the segments a”b and ab”. These four segments are contained in X, and since
X is simply connected, also the shaded region bounded by the segments must be
a part of X, hence a and b see each other — a contradiction.
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Next, let X have h holes. We use a Ramsey-type result of Negetfil and Rodl
[10]. An ordered bipartite graph is a bipartite graph (U, V, E') with some linear
orderings on U and on V. (Negetfil [private communication] earlier suggested
this kind of approach for exhibiting a forbidden induced bipartite subgraph of
visibility graphs of simple polygons; see a remark at the end of this section.)

a’

Figure 1. A contradiction to the invisibility of a and b.

LeEMMA 6 ([10]): Let (U,V, FE) be a fixed ordered bipartite graph. There exists
a bipartite graph (R, S, F') such that for any linear orders <p on R and <s on
S, the corresponding ordered bipartite graph contains an ordered induced copy
of (U,V,E) (i.e. the induced embedding sends U into R and V into S in an
order-preserving manner)*.

In our situation, we let (U, V, E) be the ordered bipartite graph with U =
(ug,u1,y .-, Usht2), V = (vo,...,U3nt2), where the subgraph on each two triples
(usi, usit1, ugi+2) and (vs;, V31, V3i42) (= 0,1,...,h) is as the one in Figure 1,
i.e. ug;4+1 is connected to vs;, v3i+2 but not to vs; 41, v3;4+1 is connected to us; and
u3;42, and the remaining edges do not matter. We choose d3 so large that the
bipartite visibility graph BV G x (A3, B3) contains an induced copy (non-ordered)
of the graph (R, S, F') constructed for (U, V, E) as in Theorem 6. In the drawing
of BVGx(As, Bs), we then obtain h + 1 situations as in Figure 1, with the h+1
shaded regions being pairwise disjoint. At most h of these regions may contain a
hole of X, and the remaining one gives a contradiction to the supposed invisibility
as for the simply connected case. ]

For simply connected galleries, our proof yields a bound of roughly 10!2 for
the VC-dimension. It seems reasonable to conjecture that the VC-dimension is

* As was noted by Noga Alon [private communication), it is easy to check that a
sufficiently large random bipartite graph has the required property with a posi-
tive probability (but the NeSetfil-R6dl construction can be applied also in more
general situations, where a probabilistic proof seems difficult).



Vol. 101, 1997 GUARDING GALLERIES 131

in fact a small number, perhaps 6. A floor plan of an art gallery with a 5-point
shattered subset is shown in Figure 2. The shattered set is indicated by dots
numbered 1 thru 5. Crosses mark points which see only certain subsets; e.g.,
a cross labeled by 134 sees points 1, 3, and 4 only. All types of subsets up to
symmetry are shown, with an exception of the empty set (for which we can always
make a tiny niche somewhere in the wall, so that a point there sees no-one).
Recently Valtr [16] found a more complicated example with a 6-point shattered
subset and succeeded in improving the upper bound on the VC-dimension to 23.

Figure 2. A 5-point shattered set.

Remark: In her thesis [5], Everett asked whether there is a bipartite graph which
cannot occur as an induced subgraph of the visibility graph of a simple polygon
(i.e. a graph of the form VG x (A), where X is a simple polygon and A is the set of
its vertices). Shermer [15] exhibited such a forbidden bipartite subgraph; in fact
he constructed a bipartite graph on 30 vertices which cannot occur as VG x (4)
for any simply connected X and any A C X. For the VC-dimension result we
need more — namely a bipartite graph which cannot occur as BVGx (A, B), i.e.
it is not a visibility graph even if we add any subset of edges on 4 and on B.

3. Fractional Helly and duality

The extra step we need for the proof of Theorem 2 is the following

PROPOSITION 7: If X and k are as in Theorem 2, then there exists a Borel
measure i on X such that p(V(z)) >e=k3 forallz € X.



132 G. KALAI AND J. MATOUSEK Isr. J. Math.

We will first show:

LEMMA 8: Let X and k be as in Theorem 2. Let F = {V(z) : z € X}, and
€ = k™3, Then for any finite collection Fy, Fs, ..., F, of sets in F and any choice
of nonnegative reals ty,...,t, with t; +to + .-+, = 1 there exists a point

x € X such that
Y tixe

i, z€F;

Alon and Kleitman proved the assertion of Lemma 8 for a family F of convex
compact sets in the plane so that from every k£ members of the family 3 have a
nonempty intersection. Alon and Kleitman derived their result from a “fractional
Helly theorem” of Katchalski and Liu asserting (in a sharp form proved by Kalai
and by Eckhoff) that for a family of n convex sets in the plane, if the number of
triples of sets in the family having non-empty intersection is a(g) then there is
an intersecting subfamily of size dn, with § > 1— (1 —a)'/3. The fractional Helly
theorem gives the assertion of the Lemma for t; = 1/nfor i =1,2,...,n. Apply-
ing the fractional Helly theorem for families obtained from F by taking several
copies of each set gives, with some calculations, the case where #y,%9,...,#, are
rational numbers, and the general case follows by a limiting argument.

Alon and Kleitman’s proof would apply without any change if we can show
that finite subfamilies of the family of sets {V(z) : ¢ € X'} satisfy the “fractional
Helly theorem” (although the set V' (x) need not be convex in general). It follows
from a theorem of Eckhoff [4] that if F is a finite family of contractible sets in the
plane such that every nonempty intersection of sets in the family is contractible,
then the f-vector of the nerve of K is equal to the f-vector of the nerve of a
family of convex sets. (The f-vector f = (fo, f1,...) of the nerve of F is defined
as follows: f; is the number of subfamilies of F of size 7 + 1 with nonempty
intersection.) It follows that the “fractional Helly theorem” applies to families
of contractible planar sets such that all nonempty intersections are contractible.
We thus need

LEMMA 9: For any points z1,...,Z, € X, the set V(z,)N---NV(z,) is either
empty or contractible.

Proof: By a theorem of Molndr [9], it suffices to show that each V(z) is simply
connected (which is clear, as V() is star-shaped), and that each pairwise inter-
section of the form V(z) NV (y) is connected. This follows easily from the simple
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connectedness of X. Let u,v € X be two points in V(z)NV (y); by examining the
few possible relative positions of u,v,x, and y we find that u and v can always
be connected by a path within V(z) N V(y); see Figure 3. n

Yy z v ’i
Figure 3. Tllustration of the proof of connectedness of V(z) NV (y).

The last step in the proof of Proposition 7 also follows the Alon-Kleitman
proof. They use the duality theorem of linear programming (which is essentially
the separation of disjoint convex sets in a finite-dimensional space by a hyper-
plane). We need to deal with an infinite family of sets, so we apply an infinite-
dimensional separation theorem (alternatively, one could use linear programming
duality and a limit argument), in a way suggested to us by E. Matouskova.

LEMMA 10: Let F be a family of closed sets in a compact Hausdorff space
X, and let ¢ € (0,1] be a real number. Suppose that for any finite collection
F\,Fy,...,F, of sets in F and any choice of nonnegative reals ty,...,t, with
ty +ta+4+---+t, =1 there exists a point x € X such that

ZtiZE.

1, c€F;
Then there exists a Borel measure, u, on X, such that u(F) > ¢ forall F € F.

Proof: Let C(X) be the Banach space of all continuous real functions X — R
with the supremum norm (i.e. | f| = max;ex |f(z)]). For each set F € F, define
a set Dp C C(X) as the set of all continuous functions X — [0, 1] which are 1
at all points of F'. Let D C C(X) be the convex hull of { Jzc » DF.

We claim that D contains no function f with | f| < e. Suppose the contrary;
this means that there exists a finite convex combination f = Z?=1 t;fi, where
t; >0, t; =1, and f; € Dp, for some Fy,...,F, € F, such that | f| <e.
Since each Dp, is convex, we may assume that the F;’s are all distinct. Apply the
assumption of the lemma to the collection Fy, ..., F,, and the numbers t4,...,¢t,
corresponding to this convex combination. This yields a point z with ), p ti >
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e. If z € Fi, then fi(z) =1 by the definition of D, so we get

e>|fl 2 fle)=) tifi) 2 ) tize
i=1 isz€F;
which is a contradiction.

The convex sets D and {f € C(X);| f| < e} (the open e-ball) are thus
disjoint and the latter one has nonempty interior, hence there exists a hyperplane
separating them, that is, a bounded linear functional f : C(X) — IR such that
h(f) > ¢ for f € D, while h(f) < e for | f| < e (essentially by the Hahn-
Banach theorem; see e.g. [12] for an appropriate version of the separation result
and references for other results referred to in the rest of this proof). The latter
condition gives | h| <1, where | h| = sup{h(f); f € C(X),| f| =1}.

By the Riesz Representation theorem, there exists a unique regular Borel signed
measure v on X such that h(f) = [, fdv for each f € C(X). Let u be the
variation of v, i.e. the measure defined by u(E) = sup{>.~_, v(Ei)}, where
E;, ..., E} are disjoint measurable subsets of a set E C X. We have u(X) =
|hl <1

We claim that p(F) > ¢ for all F' € F. Indeed, if u(F) < ¢, choose a G 2 F
open with 4{G) < e. Then Tietze’s theorem provides a continuous function
f:X —[0,1] whichis 0 on X ~G and 1 on F, so f € Dp. On the one hand,
we should have h(f) > € by the choice of h, but on the other hand, we have
h(f) = [ fdv < [y fdu < u(G) < e. This contradiction concludes the proof.
(Alternatively, we could add the set {f € C(X); f(z) > eVx € X} to D in the
beginning; then the functional h provided by the separation is nonnegative and
we get a measure right away.) |

This finishes the proof of Proposition 7 and thus also the proof of Theorem 2.

4. An example with many holes

Example 11: There exists a constant eg > 0 such that for any integer k there is
a gallery X of measure 1, such that each point of X sees an area at least g, and
more than k points are needed to guard X.

Proof: 'We use a probabilistic construction. Let k be given; we choose two
sufficiently large integers n = n(k) and @ = Q(k). The construction starts by
choosing a trapezoid ABCD and appending n small triangular niches to the top
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side AB (the construction is illustrated in Figure 4 for n = 4). Next, we choose
n integers ¢i,..., ¢, uniformly and independently at random in range 1,...,Q.
We place q; + 1 small triangular holes at the base of the ith niche (see the detail
of the first niche in Figure 4), as follows: Assuming that the base is identified
with the interval [0, 1], the bases of the holes occupy intervals

j 1 g 1
[O,L],[i,i]w, [_J___,LFL]P__,[I__J} _
4q; | |4q; 4q: ¢ 44 ¢ 4g 4q;

The angles at the top vertices of the niches are /2, and the angles at the top
vertices of the holes are 7/3, say. This finishes the construction of the gallery X.

Figure 4. An example requiring many guards.

One can check that every point of the gallery sees at least some constant
proportion £y of the area; we omit the details of this. It remains to show that,
with a positive probability, X cannot be guarded by k guards. We show that
even the vertices vy,...,v, cannot be guarded by k guards.

Let x be a fixed point of the trapezoid ABCD. Let p; be the intersection of
the line AB with the line v;x, and let §; be the z-coordinate of p;, where the
coordinate system is chosen so that the base of the ¢th niche occupies the interval
[0,1]. If we have |m;&; — ¢;} < %, for some integer m;, then = cannot see v;. If
we consider k points zj,...,xx € ABCD, then the probability (over a random
choice of the ¢;) that none of z; sees v; is at least the probability that there exist

integers mi, ..., My with |m;;&; — gi} < i, i=1,2,... k (here &; corresponds
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to z; similarly as &; corresponds to z).

If &1, ..., &k are arbitrary real numbers, a theorem on simultaneous approxi-
mation by rationals (see, e.g., [7]) guarantees that for any given natural number @
there exist ¢; € {1,2,...,Q} and integers m;y, . .., m with [m;;&;—qi| < Q- k.
Hence if we let Q = 4%, we get that for any fixed k-tuple z, ..., 2y, the probabil-
ity that one particular v; is guarded by at least one z; is no more than 1—-1/Q.
Since the choices of the g; are independent, the probability that all the v; are
guarded by any fixed k-tuple zy,...,2x € X is at most (1 — 1/Q)"* (since at
most k points z; can be placed inside the niches, and such z; only see one v;
each).

We now want to bound the probability that there exists any placement of
Z1,...,xr at all guarding all the v;. For every i, we can divide the trapezoid
ABCD into at most (2Q)? angular sectors in such a way that points placed in
one sector either all see v; or none does, for any choice of ¢;. Hence the number
of possibly nonequivalent placements of a single point within ABCD is no larger
than the number of cells in an arrangement of n.4Q? lines, which is bounded by
5n2Q* (say). The number of nonequivalent positions for a k-tuple of points is
then at most (5n2Q*)*. If n is chosen so large that (5n2Q%)*(1 — 47%)"~% < 1,
then the probability that X can be guarded by k points is smaller than 1 as

claimed. [}

5. A remark on a greedy algorithm

One might suspect that under the conditions of Theorem 1, a guarding set of a
size bounded in terms of ¢ could be obtained by a greedy algorithm: Select a
guard which sees the maximum possible area, then select the second guard as one
seeing the largest part of the area not seen by the first guard, etc. We present
an example that this procedure might fail, i.e. select arbitrarily many guards
for some simply connected galleries. An example of such a gallery is depicted in
Figure 5.

The boundary of the gallery is drawn by a full line, the dotted lines are only
auxiliary. The little spikes (“fins”) Fi, F{, Fy, F,. .. are chosen so that the area
of F; and F) is much larger than the area of F;;, and Fj,,. The guards placed at
A and B suffice to guard all the gallery. However, the first greedily placed guard
comes to the point Gy, where it sees both F; and F] and the largest possible
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piece of the other fins (all points of the gallery, except for the fins, see everything
but possibly parts of the fins, and since Fy, F] dominate, we look for a position
where both can be seen). Now only the shaded parts of the other fins remain
unguarded, with the dominating portion of the area being in Fy, F}, so the next

guard is placed in Go, etc.

Figure 5. The greedy algorithm fails.

The gallery in the figure requires 3 greedily placed guards. It is problematic to
actually draw examples of this type forcing the greedy algorithm to place more
guards, but the construction method is extended easily. Namely, we start with
fins Fy, F{ much smaller and much closer to the tip of the large triangle, and
then we adjoin progressively smaller fins along the sides of the triangle, the next
pair always coming to the right of the intersection of the lines connecting the
previous pair to A and B (as in Figure 5). Points in each fin F; see the portion
of the triangle above the horizontal level of A and to the right of the vertical
level of the last fin, Fy. If Fi is placed sufficiently far from the vertical side of
the triangle (i.e., if we start close enough to the tip with the first pair of fins),
this represents a constant fraction of the area (we can get any fraction below %

by adjusting the proportions appropriately).
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